X-Git-Url: http://shamusworld.gotdns.org/cgi-bin/gitweb.cgi?a=blobdiff_plain;f=src%2Fgeometry.cpp;h=95d12c65068b16715086191e1d70c7e01483dcbd;hb=bf5a50feb0f84a4627a65c5b82c3ca2d2eefe54b;hp=5f9a30b964f07348db24af44482508c52bacf668;hpb=921bf050ffe5fc81a9ab377e634180e659ee5d5d;p=architektonas diff --git a/src/geometry.cpp b/src/geometry.cpp index 5f9a30b..95d12c6 100644 --- a/src/geometry.cpp +++ b/src/geometry.cpp @@ -15,33 +15,15 @@ #include "geometry.h" #include - -Point Geometry::IntersectionOfLineAndLine(Point p1, Point p2, Point p3, Point p4) -{ - // Find the intersection of the lines by formula: - // px = (x1y2 - y1x2)(x3 - x4) - (x1 - x2)(x3y4 - y3x4) - // py = (x1y2 - y1x2)(y3 - y4) - (y1 - y2)(x3y4 - y3x4) - // d = (x1 - x2)(y3 - y4) - (y1 - y2)(x3 - x4) = 0 if lines are parallel - // Intersection is (px / d, py / d) - - double d = ((p1.x - p2.x) * (p3.y - p4.y)) - ((p1.y - p2.y) * (p3.x - p4.x)); - - // Check for parallel lines, and return sentinel if so - if (d == 0) - return Point(0, 0, -1); - - double px = (((p1.x * p2.y) - (p1.y * p2.x)) * (p3.x - p4.x)) - - ((p1.x - p2.x) * ((p3.x * p4.y) - (p3.y * p4.x))); - double py = (((p1.x * p2.y) - (p1.y * p2.x)) * (p3.y - p4.y)) - - ((p1.y - p2.y) * ((p3.x * p4.y) - (p3.y * p4.x))); - - return Point(px / d, py / d, 0); -} +#include +#include "global.h" +#include "mathconstants.h" // Returns the parameter of a point in space to this vector. If the parameter // is between 0 and 1, the normal of the vector to the point is on the vector. -double Geometry::ParameterOfLineAndPoint(Point lp1, Point lp2, Point point) +// Note: lp1 is the tail, lp2 is the head of the line (vector). +double Geometry::ParameterOfLineAndPoint(Point tail, Point head, Point point) { // Geometric interpretation: // The parameterized point on the vector lineSegment is where the normal of @@ -49,23 +31,46 @@ double Geometry::ParameterOfLineAndPoint(Point lp1, Point lp2, Point point) // the perpendicular lies beyond the 1st endpoint. If pp > 1, then the // perpendicular lies beyond the 2nd endpoint. - Vector lineSegment = lp1 - lp2; + Vector lineSegment = head - tail; double magnitude = lineSegment.Magnitude(); - Vector pointSegment = point - lp2; + Vector pointSegment = point - tail; double t = lineSegment.Dot(pointSegment) / (magnitude * magnitude); return t; } -Point Geometry::MirrorPointAroundLine(Point point, Point p1, Point p2) +double Geometry::DistanceToLineFromPoint(Point tail, Point head, Point point) +{ + // Interpretation: given a line in the form x = a + tu, where u is the + // unit vector of the line, a is the tail and t is a parameter which + // describes the line, the distance of a point p to the line is given by: + // || (a - p) - ((a - p) . u) u || + // We go an extra step: we set the sign to reflect which side of the line + // it's on (+ == to the left if head points away from you, - == to the + // right) + Vector line(tail, head); + Vector u = line.Unit(); + Vector a_p = tail - point; + Vector dist = a_p - (u * (a_p).Dot(u)); + + double angle = Vector::Angle(tail, point) - line.Angle(); + + if (angle < 0) + angle += TAU; + + return dist.Magnitude() * (angle < HALF_TAU ? +1.0 : -1.0); +} + + +Point Geometry::MirrorPointAroundLine(Point point, Point tail, Point head) { // Get the vector of the intersection of the line and the normal on the // line to the point in question. - double t = ParameterOfLineAndPoint(p1, p2, point); - Vector v = Vector(p1, p2) * t; + double t = ParameterOfLineAndPoint(tail, head, point); + Vector v = Vector(tail, head) * t; - // Get the point normal to point to the line passed in (p2 is the tail) - Point normalOnLine = p2 + v; + // Get the point normal to point to the line passed in + Point normalOnLine = tail + v; // Make our mirrored vector (head - tail) Vector mirror = -(point - normalOnLine); @@ -77,12 +82,303 @@ Point Geometry::MirrorPointAroundLine(Point point, Point p1, Point p2) } +// +// point: The point we're rotating +// rotationPoint: The point we're rotating around +// Point Geometry::RotatePointAroundPoint(Point point, Point rotationPoint, double angle) { - Vector v = Vector(point, rotationPoint); + Vector v = Vector(rotationPoint, point); double px = (v.x * cos(angle)) - (v.y * sin(angle)); double py = (v.x * sin(angle)) + (v.y * cos(angle)); return Vector(rotationPoint.x + px, rotationPoint.y + py, 0); } + +double Geometry::Determinant(Point p1, Point p2) +{ + return (p1.x * p2.y) - (p2.x * p1.y); +} + + +void Geometry::Intersects(Object * obj1, Object * obj2) +{ + Global::numIntersectPoints = Global::numIntersectParams = 0; + + if ((obj1->type == OTLine) && (obj2->type == OTLine)) + CheckLineToLineIntersection(obj1, obj2); + else if ((obj1->type == OTCircle) && (obj2->type == OTCircle)) + CheckCircleToCircleIntersection(obj1, obj2); + else if ((obj1->type == OTLine) && (obj2->type == OTCircle)) + CheckLineToCircleIntersection(obj1, obj2); + else if ((obj1->type == OTCircle) && (obj2->type == OTLine)) + CheckLineToCircleIntersection(obj2, obj1); +} + + +/* +Intersecting line segments: +An easier way: +Segment L1 has edges A=(a1,a2), A'=(a1',a2'). +Segment L2 has edges B=(b1,b2), B'=(b1',b2'). +Segment L1 is the set of points tA'+(1-t)A, where 0<=t<=1. +Segment L2 is the set of points sB'+(1-s)B, where 0<=s<=1. +Segment L1 meet segment L2 if and only if for some t and s we have +tA'+(1-t)A=sB'+(1-s)B +The solution of this with respect to t and s is + +t=((-b?'a?+b?'b?+b?a?+a?b?'-a?b?-b?b?')/(b?'a?'-b?'a?-b?a?'+b?a?-a?'b?'+a?'b?+a?b?'-a?b?)) + +s=((-a?b?+a?'b?-a?a?'+b?a?+a?'a?-b?a?')/(b?'a?'-b?'a?-b?a?'+b?a?-a?'b??+a?'b?+a?b?'-a?b?)) + +So check if the above two numbers are both >=0 and <=1. +*/ + + +// Finds the intersection between two lines (if any) +void Geometry::CheckLineToLineIntersection(Object * l1, Object * l2) +{ + Global::numIntersectPoints = Global::numIntersectParams = 0; + + Vector r(l1->p[0], l1->p[1]); + Vector s(l2->p[0], l2->p[1]); + Vector v1 = l2->p[0] - l1->p[0]; // q - p + + double rxs = (r.x * s.y) - (s.x * r.y); + double t, u; + + if (rxs == 0) + { + double qpxr = (v1.x * r.y) - (r.x * v1.y); + + // Lines are parallel, so no intersection... + if (qpxr != 0) + return; + + // Check to see which endpoints are connected... Four possibilities: + if (l1->p[0] == l2->p[0]) + t = 0, u = 0; + else if (l1->p[0] == l2->p[1]) + t = 0, u = 1.0; + else if (l1->p[1] == l2->p[0]) + t = 1.0, u = 0; + else if (l1->p[1] == l2->p[1]) + t = 1.0, u = 1.0; + else + return; + } + else + { + t = ((v1.x * s.y) - (s.x * v1.y)) / rxs; + u = ((v1.x * r.y) - (r.x * v1.y)) / rxs; + } + + Global::intersectParam[0] = t; + Global::intersectParam[1] = u; + + // If the parameters are in range, we have overlap! + if ((t >= 0) && (t <= 1.0) && (u >= 0) && (u <= 1.0)) + Global::numIntersectParams = 1; +} + + +void Geometry::CheckCircleToCircleIntersection(Object * c1, Object * c2) +{ + // Set up global vars + Global::numIntersectPoints = Global::numIntersectParams = 0; + + // Get the distance between the centers of the circles + Vector centerLine(c1->p[0], c2->p[0]); + double d = centerLine.Magnitude(); + double clAngle = centerLine.Angle(); + + // If the distance between centers is greater than the sum of the radii or + // less than the difference between the radii, there is NO intersection + if ((d > (c1->radius[0] + c2->radius[0])) + || (d < fabs(c1->radius[0] - c2->radius[0]))) + return; + + // If the distance between centers is equal to the sum of the radii or + // equal to the difference between the radii, the intersection is tangent + // to both circles. + if (d == (c1->radius[0] + c2->radius[0])) + { + Global::intersectPoint[0].x = c1->p[0].x + (cos(clAngle) * c1->radius[0]); + Global::intersectPoint[0].y = c1->p[0].y + (sin(clAngle) * c1->radius[0]); + Global::numIntersectPoints = 1; + return; + } + else if (d == fabs(c1->radius[0] - c2->radius[0])) + { + double sign = (c1->radius[0] > c2->radius[0] ? +1 : -1); + Global::intersectPoint[0].x = c1->p[0].x + (cos(clAngle) * c1->radius[0] * sign); + Global::intersectPoint[0].y = c1->p[0].y + (sin(clAngle) * c1->radius[0] * sign); + Global::numIntersectPoints = 1; + return; + } + +/* + c² = a² + b² - 2ab·cos µ +2ab·cos µ = a² + b² - c² + cos µ = (a² + b² - c²) / 2ab +*/ + // Use the Law of Cosines to find the angle between the centerline and the + // radial line on Circle #1 + double a = acos(((c1->radius[0] * c1->radius[0]) + (d * d) - (c2->radius[0] * c2->radius[0])) / (2.0 * c1->radius[0] * d)); + + // Finally, find the points of intersection by using +/- the angle found + // from the centerline's angle + Global::intersectPoint[0].x = c1->p[0].x + (cos(clAngle + a) * c1->radius[0]); + Global::intersectPoint[0].y = c1->p[0].y + (sin(clAngle + a) * c1->radius[0]); + Global::intersectPoint[1].x = c1->p[0].x + (cos(clAngle - a) * c1->radius[0]); + Global::intersectPoint[1].y = c1->p[0].y + (sin(clAngle - a) * c1->radius[0]); + Global::numIntersectPoints = 2; +} + + +// +// N.B.: l is the line, c is the circle +// +void Geometry::CheckLineToCircleIntersection(Object * l, Object * c) +{ + // Set up global vars + Global::numIntersectPoints = Global::numIntersectParams = 0; + + // Step 1: Find shortest distance from center of circle to the infinite line + double t = ParameterOfLineAndPoint(l->p[0], l->p[1], c->p[0]); + Point p = l->p[0] + (Vector(l->p[0], l->p[1]) * t); + Vector radial = Vector(c->p[0], p); + double distance = radial.Magnitude(); + + // Step 2: See if we have 0, 1, or 2 intersection points + + // Case #1: No intersection points + if (distance > c->radius[0]) + return; + // Case #2: One intersection point (possibly--tangent) + else if (distance == c->radius[0]) + { + // Only intersects if the parameter is on the line segment! + if ((t >= 0.0) && (t <= 1.0)) + { + Global::intersectPoint[0] = c->p[0] + radial; + Global::numIntersectPoints = 1; + } + + return; + } + + // Case #3: Two intersection points (possibly--secant) + + // So, we have the line, and the perpendicular from the center of the + // circle to the line. Now figure out where the intersection points are. + // This is a right triangle, though do we really know all the sides? + // Don't need to, 2 is enough for Pythagoras :-) + // Radius is the hypotenuse, so we have to use c² = a² + b² => a² = c² - b² + double perpendicularLength = sqrt((c->radius[0] * c->radius[0]) - (distance * distance)); + + // Now, find the intersection points using the length... + Vector lineUnit = Vector(l->p[0], l->p[1]).Unit(); + Point i1 = p + (lineUnit * perpendicularLength); + Point i2 = p - (lineUnit * perpendicularLength); + + // Next we need to see if they are on the line segment... + double u = ParameterOfLineAndPoint(l->p[0], l->p[1], i1); + double v = ParameterOfLineAndPoint(l->p[0], l->p[1], i2); + + if ((u >= 0.0) && (u <= 1.0)) + { + Global::intersectPoint[Global::numIntersectPoints] = i1; + Global::numIntersectPoints++; + } + + if ((v >= 0.0) && (v <= 1.0)) + { + Global::intersectPoint[Global::numIntersectPoints] = i2; + Global::numIntersectPoints++; + } +} + + +// should we just do common trig solves, like AAS, ASA, SAS, SSA? +// Law of Cosines: +// c² = a² + b² - 2ab * cos(C) +// Solving for C: +// cos(C) = (c² - a² - b²) / -2ab = (a² + b² - c²) / 2ab +// Law of Sines: +// a / sin A = b / sin B = c / sin C + +// Solve the angles of the triangle given the sides. Angles returned are +// opposite of the given sides (so a1 consists of sides s2 & s3, and so on). +void Geometry::FindAnglesForSides(double s1, double s2, double s3, double * a1, double * a2, double * a3) +{ + // Use law of cosines to find 1st angle + double cosine1 = ((s2 * s2) + (s3 * s3) - (s1 * s1)) / (2.0 * s2 * s3); + + // Check for a valid triangle + if ((cosine1 < -1.0) || (cosine1 > 1.0)) + return; + + double angle1 = acos(cosine1); + + // Use law of sines to find 2nd & 3rd angles +// sin A / a = sin B / b +// sin B = (sin A / a) * b +// B = arcsin( sin A * (b / a)) +// ??? ==> B = A * arcsin(b / a) +/* +Well, look here: +sin B = sin A * (b / a) +sin B / sin A = b / a +arcsin( sin B / sin A ) = arcsin( b / a ) + +hmm... dunno... +*/ + + double angle2 = asin(s2 * (sin(angle1) / s1)); + double angle3 = asin(s3 * (sin(angle1) / s1)); + + if (a1) + *a1 = angle1; + + if (a2) + *a2 = angle2; + + if (a3) + *a3 = angle3; +} + + +Point Geometry::GetPointForParameter(Object * obj, double t) +{ + if (obj->type == OTLine) + { + // Translate line vector to the origin, then add the scaled vector to + // initial point of the line. + Vector v = obj->p[1] - obj->p[0]; + return obj->p[0] + (v * t); + } + + return Point(0, 0); +} + + +Point Geometry::Midpoint(Line * line) +{ + return Point((line->p[0].x + line->p[1].x) / 2.0, + (line->p[0].y + line->p[1].y) / 2.0); +} + + +/* +How to find the tangent of a point off a circle: + + • Calculate the midpoint on the point and the center of the circle + • Get the length of the line segment from the and the center divided by two + • Use that length to construct a circle with the point at the center and the + radius equal to that length + • The intersection of the two circles are the tangent points + +*/ +