X-Git-Url: http://shamusworld.gotdns.org/cgi-bin/gitweb.cgi?a=blobdiff_plain;f=src%2Fdac.cpp;h=983680791fccefe73613246120633f4bf8543e95;hb=19cb30261693d5c56c79d87030cfe8e1dc9ca033;hp=617918a13f725f248f9403a5bf6741706a77e4a8;hpb=f30bf746981a99079e766b0d4e9de5391a4175ff;p=virtualjaguar diff --git a/src/dac.cpp b/src/dac.cpp index 617918a..9836807 100644 --- a/src/dac.cpp +++ b/src/dac.cpp @@ -26,6 +26,27 @@ // to prevent things like the DSP filling only one side and such. Do such // mono modes exist on the Jag? Seems to according to Super Burnout. +// After testing on a real Jaguar, it seems clear that the I2S interrupt drives +// the audio subsystem. So while you can drive the audio at a *slower* rate than +// set by SCLK, you can't drive it any *faster*. Also note, that if the I2S +// interrupt is not enabled/running on the DSP, then there is no audio. Also, +// audio can be muted by clearing bit 8 of JOYSTICK (JOY1). +// +// Approach: We can run the DSP in the host system's audio IRQ, by running the +// DSP for the alloted time (depending on the host buffer size & sample rate) +// by simply reading the L/R_I2S (L/RTXD) registers at regular intervals. We +// would also have to time the I2S/TIMER0/TIMER1 interrupts in the DSP as well. +// This way, we can run the host audio IRQ at, say, 48 KHz and not have to care +// so much about SCLK and running a separate buffer and all the attendant +// garbage that comes with that awful approach. +// +// There would still be potential gotchas, as the SCLK can theoretically drive +// the I2S at 26590906 / 2 (for SCLK == 0) = 13.3 MHz which corresponds to an +// audio rate 416 KHz (dividing the I2S rate by 32, for 16-bit stereo). It +// seems doubtful that anything useful could come of such a high rate, and we +// can probably safely ignore any such ridiculously high audio rates. It won't +// sound the same as on a real Jaguar, but who cares? :-) + #include "dac.h" #include "SDL.h" @@ -127,6 +148,16 @@ void DACDone(void) WriteLog("DAC: Done.\n"); } + +// Approach: Run the DSP for however many cycles needed to correspond to whatever sample rate +// we've set the audio to run at. So, e.g., if we run it at 48 KHz, then we would run the DSP +// for however much time it takes to fill the buffer. So with a 2K buffer, this would correspond +// to running the DSP for 0.042666... seconds. At 26590906 Hz, this would correspond to +// running the DSP for 1134545 cycles. You would then sample the L/RTXD registers every +// 1134545 / 2048 = 554 cycles to fill the buffer. You would also have to manage interrupt +// timing as well (generating them at the proper times), but that shouldn't be too difficult... +// If the DSP isn't running, then fill the buffer with L/RTXD and exit. + // // SDL callback routine to fill audio buffer //