]> Shamusworld >> Repos - virtualjaguar/blob - src/dac.cpp
Changes to support config file
[virtualjaguar] / src / dac.cpp
1 //
2 // DAC (really, Synchronous Serial Interface) Handler
3 //
4 // by cal2
5 // GCC/SDL port by Niels Wagenaar (Linux/WIN32) and Caz (BeOS)
6 // Rewritten by James L. Hammons
7 //
8
9 #include <SDL.h>
10 #include "jaguar.h"
11 #include "dac.h"
12 #include "settings.h"
13
14 //#define DEBUG_DAC
15
16 #define BUFFER_SIZE             0x8000                                          // Make the DAC buffers 32K x 16 bits
17
18 // Jaguar memory locations
19
20 #define LTXD                    0xF1A148
21 #define RTXD                    0xF1A14C
22 #define SCLK                    0xF1A150
23 #define SMODE                   0xF1A154
24
25 // Local variables
26
27 uint32 LeftFIFOHeadPtr, LeftFIFOTailPtr, RightFIFOHeadPtr, RightFIFOTailPtr;
28 SDL_AudioSpec desired;
29
30 // We can get away with using native endian here because we can tell SDL to use the native
31 // endian when looking at the sample buffer, i.e., no need to worry about it.
32
33 uint16 * DACBuffer;
34 uint8 SCLKFrequencyDivider = 19;                                                // Default is roughly 22 KHz (20774 Hz in NTSC mode)
35 uint16 serialMode = 0;
36
37 // Private function prototypes
38
39 void SDLSoundCallback(void * userdata, Uint8 * buffer, int length);
40 int GetCalculatedFrequency(void);
41
42 //
43 // Initialize the SDL sound system (?) (!)
44 //
45 void DACInit(void)
46 {
47         memory_malloc_secure((void **)&DACBuffer, BUFFER_SIZE * sizeof(uint16), "DAC buffer");
48
49         desired.freq = GetCalculatedFrequency();                // SDL will do conversion on the fly, if it can't get the exact rate. Nice!
50         desired.format = AUDIO_S16SYS;                                  // This uses the native endian (for portability)...
51         desired.channels = 2;
52         desired.samples = 4096;                                                 // Let's try a 4K buffer (can always go lower)
53         desired.callback = SDLSoundCallback;
54
55         if (SDL_OpenAudio(&desired, NULL) < 0)                  // NULL means SDL guarantees what we want
56         {
57                 WriteLog("DAC: Failed to initialize SDL sound. Shutting down!\n");
58                 log_done();
59                 exit(1);
60         }
61
62         DACReset();
63         SDL_PauseAudio(false);                                                  // Start playback!
64         WriteLog("DAC: Successfully initialized.\n");
65 }
66
67 //
68 // Reset the sound buffer FIFOs
69 //
70 void DACReset(void)
71 {
72         LeftFIFOHeadPtr = LeftFIFOTailPtr = 0, RightFIFOHeadPtr = RightFIFOTailPtr = 1;
73 }
74
75 //
76 // Close down the SDL sound subsystem (?) (!)
77 //
78 void DACDone(void)
79 {
80         SDL_PauseAudio(true);
81         SDL_CloseAudio();
82         WriteLog("DAC: Done.\n");
83 }
84
85 //
86 // SDL callback routine to fill audio buffer
87 //
88 // Note: The samples are packed in the buffer in 16 bit left/16 bit right pairs.
89 //
90 void SDLSoundCallback(void * userdata, Uint8 * buffer, int length)
91 {
92         // Clear the buffer to silence, in case the DAC buffer is empty (or short)
93         memset(buffer, desired.silence, length);
94 //WriteLog("DAC: Inside callback...\n");
95         if (LeftFIFOHeadPtr != LeftFIFOTailPtr)
96         {
97 //WriteLog("DAC: About to write some data!\n");
98                 int numLeftSamplesReady
99                         = (LeftFIFOTailPtr + (LeftFIFOTailPtr < LeftFIFOHeadPtr ? BUFFER_SIZE : 0))
100                                 - LeftFIFOHeadPtr;
101                 int numRightSamplesReady
102                         = (RightFIFOTailPtr + (RightFIFOTailPtr < RightFIFOHeadPtr ? BUFFER_SIZE : 0))
103                                 - RightFIFOHeadPtr;
104                 int numSamplesReady
105                         = (numLeftSamplesReady < numRightSamplesReady
106                                 ? numLeftSamplesReady : numRightSamplesReady);//Hmm. * 2;
107
108 //The numbers look good--it's just that the DSP can't get enough samples in the DAC buffer!
109 //WriteLog("DAC: Left/RightFIFOHeadPtr: %u/%u, Left/RightFIFOTailPtr: %u/%u\n", LeftFIFOHeadPtr, RightFIFOHeadPtr, LeftFIFOTailPtr, RightFIFOTailPtr);
110 //WriteLog("     numLeft/RightSamplesReady: %i/%i, numSamplesReady: %i, length of buffer: %i\n", numLeftSamplesReady, numRightSamplesReady, numSamplesReady, length);
111
112 /*              if (numSamplesReady > length)
113                         numSamplesReady = length;//*/
114                 if (numSamplesReady > length / 2)       // length / 2 because we're comparing 16-bit lengths
115                         numSamplesReady = length / 2;
116 //else
117 //      WriteLog("     Not enough samples to fill the buffer (short by %u L/R samples)...\n", (length / 2) - numSamplesReady);
118 //WriteLog("DAC: %u samples ready.\n", numSamplesReady);
119
120                 // Actually, it's a bit more involved than this, but this is the general idea:
121 //              memcpy(buffer, DACBuffer, length);
122                 for(int i=0; i<numSamplesReady; i++)
123                         // Could also use (as long as BUFFER_SIZE is a multiple of 2):
124                         ((uint16 *)buffer)[i] = DACBuffer[(LeftFIFOHeadPtr + i) % BUFFER_SIZE];
125 //                      buffer[i] = DACBuffer[(LeftFIFOHeadPtr + i) & (BUFFER_SIZE - 1)];
126
127                 LeftFIFOHeadPtr = (LeftFIFOHeadPtr + numSamplesReady) % BUFFER_SIZE;
128                 RightFIFOHeadPtr = (RightFIFOHeadPtr + numSamplesReady) % BUFFER_SIZE;
129                 // Could also use (as long as BUFFER_SIZE is a multiple of 2):
130 //              LeftFIFOHeadPtr = (LeftFIFOHeadPtr + (numSamplesReady)) & (BUFFER_SIZE - 1);
131 //              RightFIFOHeadPtr = (RightFIFOHeadPtr + (numSamplesReady)) & (BUFFER_SIZE - 1);
132 //WriteLog("  -> Left/RightFIFOHeadPtr: %u/%u, Left/RightFIFOTailPtr: %u/%u\n", LeftFIFOHeadPtr, RightFIFOHeadPtr, LeftFIFOTailPtr, RightFIFOTailPtr);
133         }
134 //Hmm. Seems that the SDL buffer isn't being starved by the DAC buffer...
135 //      else
136 //              WriteLog("DAC: Silence...!\n");
137 }
138
139 //
140 // Calculate the frequency of SCLK * 32 using the divider
141 //
142 int GetCalculatedFrequency(void)
143 {
144 //      extern bool hardwareTypeNTSC;
145         int systemClockFrequency = (vjs.hardwareTypeNTSC ? RISC_CLOCK_RATE_NTSC : RISC_CLOCK_RATE_PAL);
146
147         // We divide by 32 here in order to find the frequency of 32 SCLKs in a row (transferring
148         // 16 bits of left data + 16 bits of right data = 32 bits, 1 SCLK = 1 bit transferred).
149         return systemClockFrequency / (32 * (2 * (SCLKFrequencyDivider + 1)));
150 }
151
152 //
153 // LTXD/RTXD/SCLK/SMODE ($F1A148/4C/50/54)
154 //
155 void DACWriteByte(uint32 offset, uint8 data)
156 {
157         WriteLog("DAC: Writing %02X at %08X\n", data, offset);
158         if (offset == SCLK + 3)
159                 DACWriteWord(offset - 3, (uint16)data);
160 }
161
162 void DACWriteWord(uint32 offset, uint16 data)
163 {
164         if (offset == LTXD + 2)
165         {
166                 if (LeftFIFOTailPtr + 2 != LeftFIFOHeadPtr)
167                 {
168                         SDL_LockAudio();                                                // Is it necessary to do this? Mebbe.
169                         // We use a circular buffer 'cause it's easy. Note that the callback function
170                         // takes care of dumping audio to the soundcard...! Also note that we're writing
171                         // the samples in the buffer in an interleaved L/R format.
172                         LeftFIFOTailPtr = (LeftFIFOTailPtr + 2) % BUFFER_SIZE;
173                         DACBuffer[LeftFIFOTailPtr] = data;
174 // Aaron's code does this, but I don't know why...
175 //Flipping this bit makes the audio MUCH louder. Need to look at the amplitude of the
176 //waveform to see if any massaging is needed here...
177 //Looks like a cheap & dirty way to convert signed samples to unsigned...
178 //                      DACBuffer[LeftFIFOTailPtr] = data ^ 0x8000;
179                         SDL_UnlockAudio();
180                 }
181 #ifdef DEBUG_DAC
182                 else
183                         WriteLog("DAC: Ran into FIFO's left tail pointer!\n");
184 #endif
185         }
186         else if (offset == RTXD + 2)
187         {
188                 if (RightFIFOTailPtr + 2 != RightFIFOHeadPtr)
189                 {
190                         SDL_LockAudio();
191                         RightFIFOTailPtr = (RightFIFOTailPtr + 2) % BUFFER_SIZE;
192                         DACBuffer[RightFIFOTailPtr] = data;
193 // Aaron's code does this, but I don't know why...
194 //                      DACBuffer[RightFIFOTailPtr] = data ^ 0x8000;
195                         SDL_UnlockAudio();
196                 }
197 #ifdef DEBUG_DAC
198                 else
199                         WriteLog("DAC: Ran into FIFO's right tail pointer!\n");
200 #endif
201         }
202         else if (offset == SCLK + 2)                                    // Sample rate
203         {
204                 WriteLog("DAC: Writing %u to SCLK...\n", data);
205                 if ((uint8)data != SCLKFrequencyDivider)
206                 {
207                         SCLKFrequencyDivider = (uint8)data;
208 //Of course a better way would be to query the hardware to find the upper limit...
209                         if (data > 7)   // Anything less than 8 is too high!
210                         {
211                                 SDL_CloseAudio();
212                                 desired.freq = GetCalculatedFrequency();// SDL will do conversion on the fly, if it can't get the exact rate. Nice!
213                                 WriteLog("DAC: Changing sample rate to %u Hz!\n", desired.freq);
214
215                                 if (SDL_OpenAudio(&desired, NULL) < 0)  // NULL means SDL guarantees what we want
216                                 {
217                                         WriteLog("DAC: Failed to initialize SDL sound: %s.\nDesired freq: %u\nShutting down!\n", SDL_GetError(), desired.freq);
218                                         log_done();
219                                         exit(1);
220                                 }
221
222                                 DACReset();
223                                 SDL_PauseAudio(false);                          // Start playback!
224                         }
225                 }
226         }
227         else if (offset == SMODE + 2)
228         {
229                 serialMode = data;
230                 WriteLog("DAC: Writing to SMODE. Bits: %s%s%s%s%s%s\n",
231                         (data & 0x01 ? "INTERNAL " : ""), (data & 0x02 ? "MODE " : ""),
232                         (data & 0x04 ? "WSEN " : ""), (data & 0x08 ? "RISING " : ""),
233                         (data & 0x10 ? "FALLING " : ""), (data & 0x20 ? "EVERYWORD" : ""));
234         }
235 }
236
237 //
238 // LRXD/RRXD/SSTAT ($F1A148/4C/50)
239 //
240 uint8 DACReadByte(uint32 offset)
241 {
242 //      WriteLog("DAC: Reading byte from %08X\n", offset);
243         return 0xFF;
244 }
245
246 uint16 DACReadWord(uint32 offset)
247 {
248 //      WriteLog("DAC: Reading word from %08X\n", offset);
249         return 0xFFFF;
250 }