]> Shamusworld >> Repos - architektonas/blob - src/base/rs_spline.cpp
Refactoring: Moved RS_GraphicView to GraphicView.
[architektonas] / src / base / rs_spline.cpp
1 // rs_spline.cpp
2 //
3 // Part of the Architektonas Project
4 // Originally part of QCad Community Edition by Andrew Mustun
5 // Extensively rewritten and refactored by James L. Hammons
6 // (C) 2010 Underground Software
7 //
8 // JLH = James L. Hammons <jlhamm@acm.org>
9 //
10 // Who  When        What
11 // ---  ----------  -----------------------------------------------------------
12 // JLH  06/02/2010  Added this text. :-)
13 //
14
15 #include "rs_spline.h"
16
17 #include "rs_debug.h"
18 #include "graphicview.h"
19 #include "drawing.h"
20 #include "paintintf.h"
21
22 /**
23  * Constructor.
24  */
25 RS_Spline::RS_Spline(RS_EntityContainer * parent, const RS_SplineData & d):
26         RS_EntityContainer(parent), data(d)
27 {
28         calculateBorders();
29 }
30
31 /**
32  * Destructor.
33  */
34 RS_Spline::~RS_Spline()
35 {
36 }
37
38 RS_Entity * RS_Spline::clone()
39 {
40         RS_Spline * l = new RS_Spline(*this);
41 #warning "!!! Need to deal with setAutoDelete() Qt3->Qt4 !!!"
42 //      l->entities.setAutoDelete(entities.autoDelete());
43         l->initId();
44         l->detach();
45         return l;
46 }
47
48 /**     @return RS2::EntitySpline */
49 /*virtual*/ RS2::EntityType RS_Spline::rtti() const
50 {
51         return RS2::EntitySpline;
52 }
53
54 /** @return false */
55 /*virtual*/ bool RS_Spline::isEdge() const
56 {
57         return false;
58 }
59
60 /** @return Copy of data that defines the spline. */
61 RS_SplineData RS_Spline::getData() const
62 {
63         return data;
64 }
65
66 /** Sets the splines degree (1-3). */
67 void RS_Spline::setDegree(int deg)
68 {
69         if (deg >= 1 && deg <= 3)
70                 data.degree = deg;
71 }
72
73 /** @return Degree of this spline curve (1-3).*/
74 int RS_Spline::getDegree()
75 {
76         return data.degree;
77 }
78
79 /** @return 0. */
80 int RS_Spline::getNumberOfKnots()
81 {
82         return 0;
83 }
84
85 /** @return Number of control points. */
86 int RS_Spline::getNumberOfControlPoints()
87 {
88         return data.controlPoints.count();
89 }
90
91 /**
92  * @retval true if the spline is closed.
93  * @retval false otherwise.
94  */
95 bool RS_Spline::isClosed()
96 {
97         return data.closed;
98 }
99
100 /**
101  * Sets the closed falg of this spline.
102  */
103 void RS_Spline::setClosed(bool c)
104 {
105         data.closed = c;
106         update();
107 }
108
109 void RS_Spline::calculateBorders()
110 {
111     /*minV = Vector::minimum(data.startpoint, data.endpoint);
112     maxV = Vector::maximum(data.startpoint, data.endpoint);
113
114     Q3ValueList<Vector>::iterator it;
115     for (it = data.controlPoints.begin();
116     it!=data.controlPoints.end(); ++it) {
117
118     minV = Vector::minimum(*it, minV);
119     maxV = Vector::maximum(*it, maxV);
120 }
121     */
122 }
123
124 VectorSolutions RS_Spline::getRefPoints()
125 {
126         VectorSolutions ret(data.controlPoints.count());
127
128         int i = 0;
129         QList<Vector>::iterator it;
130
131         for(it=data.controlPoints.begin(); it!=data.controlPoints.end(); ++it, ++i)
132         {
133                 ret.set(i, (*it));
134         }
135
136         return ret;
137 }
138
139 Vector RS_Spline::getNearestRef(const Vector & coord, double * dist)
140 {
141         //return getRefPoints().getClosest(coord, dist);
142         return RS_Entity::getNearestRef(coord, dist);
143 }
144
145 Vector RS_Spline::getNearestSelectedRef(const Vector & coord, double * dist)
146 {
147         //return getRefPoints().getClosest(coord, dist);
148         return RS_Entity::getNearestSelectedRef(coord, dist);
149 }
150
151 /**
152  * Updates the internal polygon of this spline. Called when the
153  * spline or it's data, position, .. changes.
154  */
155 void RS_Spline::update()
156 {
157         RS_DEBUG->print("RS_Spline::update");
158
159         clear();
160
161         if (isUndone())
162                 return;
163
164         if (data.degree < 1 || data.degree > 3)
165         {
166                 RS_DEBUG->print("RS_Spline::update: invalid degree: %d", data.degree);
167                 return;
168         }
169
170         if (data.controlPoints.count() < (uint)data.degree + 1)
171         {
172                 RS_DEBUG->print("RS_Spline::update: not enough control points");
173                 return;
174         }
175
176         resetBorders();
177
178 //      Q3ValueList<Vector> tControlPoints = data.controlPoints;
179         QList<Vector> tControlPoints = data.controlPoints;
180
181         if (data.closed)
182         {
183                 for(int i=0; i<data.degree; ++i)
184                         tControlPoints.append(data.controlPoints[i]);
185         }
186
187         int i;
188         int npts = tControlPoints.count();
189         // order:
190         int k = data.degree + 1;
191         // resolution:
192         int p1 = getGraphicVariableInt("$SPLINESEGS", 8) * npts;
193
194         double * b = new double[npts * 3 + 1];
195         double * h = new double[npts + 1];
196         double * p = new double[p1 * 3 + 1];
197
198 //      Q3ValueList<Vector>::iterator it;
199         QList<Vector>::iterator it;
200         i = 1;
201
202         for(it=tControlPoints.begin(); it!=tControlPoints.end(); ++it)
203         {
204                 b[i + 0] = (*it).x;
205                 b[i + 1] = (*it).y;
206                 b[i + 2] = 0.0;
207
208                 RS_DEBUG->print("RS_Spline::update: b[%d]: %f/%f", i, b[i], b[i + 1]);
209                 i += 3;
210         }
211
212         // set all homogeneous weighting factors to 1.0
213         for(i=1; i<=npts; i++)
214                 h[i] = 1.0;
215
216         for(i=1; i<=3*p1; i++)
217                 p[i] = 0.0;
218
219         if (data.closed)
220                 rbsplinu(npts, k, p1, b, h, p);
221         else
222                 rbspline(npts, k, p1, b, h, p);
223
224         Vector prev(false);
225
226         for(i=1; i<=3*p1; i=i+3)
227         {
228                 if (prev.valid)
229                 {
230                         RS_Line * line = new RS_Line(this, RS_LineData(prev, Vector(p[i], p[i + 1])));
231                         line->setLayer(NULL);
232                         line->setPen(RS_Pen(RS2::FlagInvalid));
233                         addEntity(line);
234                 }
235
236                 prev = Vector(p[i], p[i+1]);
237                 minV = Vector::minimum(prev, minV);
238                 maxV = Vector::maximum(prev, maxV);
239         }
240
241         delete[] b;
242         delete[] h;
243         delete[] p;
244 }
245
246 Vector RS_Spline::getNearestEndpoint(const Vector & coord, double * dist)
247 {
248     double minDist = RS_MAXDOUBLE;
249     double d;
250     Vector ret(false);
251
252     for (uint i=0; i<data.controlPoints.count(); i++) {
253         d = data.controlPoints[i].distanceTo(coord);
254
255         if (d<minDist) {
256             minDist = d;
257             ret = data.controlPoints[i];
258         }
259     }
260     if (dist!=NULL) {
261         *dist = minDist;
262     }
263         return ret;
264 }
265
266 /*
267 // The default implementation of RS_EntityContainer is inaccurate but
268 //   has to do for now..
269 Vector RS_Spline::getNearestPointOnEntity(const Vector& coord,
270         bool onEntity, double* dist, RS_Entity** entity) {
271 }
272 */
273
274 Vector RS_Spline::getNearestCenter(const Vector & /*coord*/, double * dist)
275 {
276         if (dist != NULL)
277                 *dist = RS_MAXDOUBLE;
278
279         return Vector(false);
280 }
281
282 Vector RS_Spline::getNearestMiddle(const Vector & /*coord*/, double * dist)
283 {
284         if (dist!=NULL)
285                 *dist = RS_MAXDOUBLE;
286
287         return Vector(false);
288 }
289
290 Vector RS_Spline::getNearestDist(double /*distance*/, const Vector & /*coord*/, double * dist)
291 {
292         if (dist != NULL)
293                 *dist = RS_MAXDOUBLE;
294
295         return Vector(false);
296 }
297
298 void RS_Spline::move(Vector offset)
299 {
300 //      Q3ValueList<Vector>::iterator it;
301         QList<Vector>::iterator it;
302
303         for(it=data.controlPoints.begin(); it!=data.controlPoints.end(); ++it)
304                 (*it).move(offset);
305
306         update();
307 }
308
309 void RS_Spline::rotate(Vector center, double angle)
310 {
311 //      Q3ValueList<Vector>::iterator it;
312         QList<Vector>::iterator it;
313
314         for(it=data.controlPoints.begin(); it!=data.controlPoints.end(); ++it)
315                 (*it).rotate(center, angle);
316
317         update();
318 }
319
320 void RS_Spline::scale(Vector center, Vector factor)
321 {
322 //      Q3ValueList<Vector>::iterator it;
323         QList<Vector>::iterator it;
324
325         for(it=data.controlPoints.begin(); it!=data.controlPoints.end(); ++it)
326                 (*it).scale(center, factor);
327
328         update();
329 }
330
331 void RS_Spline::mirror(Vector axisPoint1, Vector axisPoint2)
332 {
333 //      Q3ValueList<Vector>::iterator it;
334         QList<Vector>::iterator it;
335
336         for(it=data.controlPoints.begin(); it!=data.controlPoints.end(); ++it)
337                 (*it).mirror(axisPoint1, axisPoint2);
338
339         update();
340 }
341
342 void RS_Spline::moveRef(const Vector & ref, const Vector & offset)
343 {
344 //      Q3ValueList<Vector>::iterator it;
345         QList<Vector>::iterator it;
346
347         for(it=data.controlPoints.begin(); it!=data.controlPoints.end(); ++it)
348         {
349                 if (ref.distanceTo(*it) < 1.0e-4)
350                         (*it).move(offset);
351         }
352
353         update();
354 }
355
356 void RS_Spline::draw(PaintInterface * painter, GraphicView * view, double /*patternOffset*/)
357 {
358         if (painter == NULL || view == NULL)
359                 return;
360
361         RS_Entity * e = firstEntity(RS2::ResolveNone);
362         double offset = 0.0;
363
364         if (e != NULL)
365         {
366                 view->drawEntity(e);
367                 offset += e->getLength();
368                 //RS_DEBUG->print("offset: %f\nlength was: %f", offset, e->getLength());
369         }
370
371         for (RS_Entity * e=nextEntity(RS2::ResolveNone); e!=NULL; e = nextEntity(RS2::ResolveNone))
372         {
373                 view->drawEntityPlain(e, -offset);
374                 offset += e->getLength();
375                 //RS_DEBUG->print("offset: %f\nlength was: %f", offset, e->getLength());
376         }
377 }
378
379 /**
380  * Todo: draw the spline, user patterns.
381  */
382 /*
383 void RS_Spline::draw(RS_Painter* painter, GraphicView* view) {
384    if (painter==NULL || view==NULL) {
385        return;
386    }
387
388    / *
389       if (data.controlPoints.count()>0) {
390           Vector prev(false);
391           Q3ValueList<Vector>::iterator it;
392           for (it = data.controlPoints.begin(); it!=data.controlPoints.end(); ++it) {
393               if (prev.valid) {
394                   painter->drawLine(view->toGui(prev),
395                                     view->toGui(*it));
396               }
397               prev = (*it);
398           }
399       }
400    * /
401
402    int i;
403    int npts = data.controlPoints.count();
404    // order:
405    int k = 4;
406    // resolution:
407    int p1 = 100;
408
409    double* b = new double[npts*3+1];
410    double* h = new double[npts+1];
411    double* p = new double[p1*3+1];
412
413    Q3ValueList<Vector>::iterator it;
414    i = 1;
415    for (it = data.controlPoints.begin(); it!=data.controlPoints.end(); ++it) {
416        b[i] = (*it).x;
417        b[i+1] = (*it).y;
418        b[i+2] = 0.0;
419
420         RS_DEBUG->print("RS_Spline::draw: b[%d]: %f/%f", i, b[i], b[i+1]);
421         i+=3;
422    }
423
424    // set all homogeneous weighting factors to 1.0
425    for (i=1; i <= npts; i++) {
426        h[i] = 1.0;
427    }
428
429    //
430    for (i = 1; i <= 3*p1; i++) {
431        p[i] = 0.0;
432    }
433
434    rbspline(npts,k,p1,b,h,p);
435
436    Vector prev(false);
437    for (i = 1; i <= 3*p1; i=i+3) {
438        if (prev.valid) {
439            painter->drawLine(view->toGui(prev),
440                              view->toGui(Vector(p[i], p[i+1])));
441        }
442        prev = Vector(p[i], p[i+1]);
443    }
444 }
445 */
446
447 /**
448  * @return The reference points of the spline.
449  */
450 //Q3ValueList<Vector> RS_Spline::getControlPoints()
451 QList<Vector> RS_Spline::getControlPoints()
452 {
453         return data.controlPoints;
454 }
455
456 /**
457  * Appends the given point to the control points.
458  */
459 void RS_Spline::addControlPoint(const Vector & v)
460 {
461         data.controlPoints.append(v);
462 }
463
464 /**
465  * Removes the control point that was last added.
466  */
467 void RS_Spline::removeLastControlPoint()
468 {
469         data.controlPoints.pop_back();
470 }
471
472 /**
473  * Generates B-Spline open knot vector with multiplicity
474  * equal to the order at the ends.
475  */
476 void RS_Spline::knot(int num, int order, int knotVector[])
477 {
478         knotVector[1] = 0;
479
480         for(int i=2; i<=num+order; i++)
481         {
482                 if ((i > order) && (i < num + 2))
483                 {
484                         knotVector[i] = knotVector[i - 1] + 1;
485                 }
486                 else
487                 {
488                         knotVector[i] = knotVector[i - 1];
489                 }
490         }
491 }
492
493 /**
494  * Generates rational B-spline basis functions for an open knot vector.
495  */
496 void RS_Spline::rbasis(int c, double t, int npts, int x[], double h[], double r[])
497 {
498         int nplusc;
499         int i, k;
500         double d, e;
501         double sum;
502         //double temp[36];
503
504         nplusc = npts + c;
505
506         double * temp = new double[nplusc + 1];
507
508         // calculate the first order nonrational basis functions n[i]
509         for(i=1; i<=nplusc-1; i++)
510         {
511                 if ((t >= x[i]) && (t < x[i + 1]))
512                         temp[i] = 1;
513                 else
514                         temp[i] = 0;
515         }
516
517         /* calculate the higher order nonrational basis functions */
518
519         for(k=2; k<=c; k++)
520         {
521                 for(i=1; i<=nplusc-k; i++)
522                 {
523                         // if the lower order basis function is zero skip the calculation
524                         if (temp[i] != 0)
525                                 d = ((t - x[i]) * temp[i]) / (x[i + k - 1] - x[i]);
526                         else
527                                 d = 0;
528
529                         // if the lower order basis function is zero skip the calculation
530                         if (temp[i + 1] != 0)
531                                 e = ((x[i + k] - t) * temp[i + 1]) / (x[i + k] - x[i + 1]);
532                         else
533                                 e = 0;
534
535                         temp[i] = d + e;
536                 }
537         }
538
539         // pick up last point
540         if (t == (double)x[nplusc])
541                 temp[npts] = 1;
542
543         // calculate sum for denominator of rational basis functions
544         sum = 0.;
545
546         for(i=1; i<=npts; i++)
547                 sum = sum + temp[i] * h[i];
548
549         // form rational basis functions and put in r vector
550         for(i=1; i<=npts; i++)
551         {
552                 if (sum != 0)
553                         r[i] = (temp[i] * h[i]) / (sum);
554                 else
555                         r[i] = 0;
556         }
557
558         delete[] temp;
559 }
560
561 /**
562  * Generates a rational B-spline curve using a uniform open knot vector.
563  */
564 void RS_Spline::rbspline(int npts, int k, int p1, double b[], double h[], double p[])
565 {
566         int i, j, icount, jcount;
567         int i1;
568         //int x[30]; /* allows for 20 data points with basis function of order 5 */
569         int nplusc;
570
571         double step;
572         double t;
573         //double nbasis[20];
574         double temp;
575
576         nplusc = npts + k;
577
578         int * x = new int[nplusc + 1];
579         double * nbasis = new double[npts + 1];
580
581         // zero and redimension the knot vector and the basis array
582
583         for(i = 0; i <= npts; i++)
584                 nbasis[i] = 0.0;
585
586         for(i = 0; i <= nplusc; i++)
587                 x[i] = 0;
588
589         // generate the uniform open knot vector
590         knot(npts, k, x);
591
592         icount = 0;
593
594         // calculate the points on the rational B-spline curve
595         t = 0;
596         step = ((double)x[nplusc]) / ((double)(p1 - 1));
597
598         for(i1=1; i1<= p1; i1++)
599         {
600                 if ((double)x[nplusc] - t < 5e-6)
601                         t = (double)x[nplusc];
602
603                 // generate the basis function for this value of t
604                 rbasis(k, t, npts, x, h, nbasis);
605
606                 // generate a point on the curve
607                 for(j=1; j<=3; j++)
608                 {
609                         jcount = j;
610                         p[icount + j] = 0.0;
611
612                         // Do local matrix multiplication
613                         for(i=1; i<=npts; i++)
614                         {
615                                 temp = nbasis[i] * b[jcount];
616                                 p[icount + j] = p[icount + j] + temp;
617                                 jcount = jcount + 3;
618                         }
619                 }
620
621                 icount = icount + 3;
622                 t = t + step;
623         }
624
625         delete[] x;
626         delete[] nbasis;
627 }
628
629 void RS_Spline::knotu(int num, int order, int knotVector[])
630 {
631         int nplusc = num + order;
632         int nplus2 = num + 2;
633         knotVector[1] = 0;
634
635         for(int i=2; i<=nplusc; i++)
636                 knotVector[i] = i - 1;
637 }
638
639 void RS_Spline::rbsplinu(int npts, int k, int p1, double b[], double h[], double p[])
640 {
641         int i, j, icount, jcount;
642         int i1;
643         //int x[30];            /* allows for 20 data points with basis function of order 5 */
644         int nplusc;
645
646         double step;
647         double t;
648         //double nbasis[20];
649         double temp;
650
651         nplusc = npts + k;
652
653         int * x = new int[nplusc + 1];
654         double * nbasis = new double[npts + 1];
655
656         /*  zero and redimension the knot vector and the basis array */
657
658         for(i=0; i<=npts; i++)
659                 nbasis[i] = 0.0;
660
661         for(i=0; i<=nplusc; i++)
662                 x[i] = 0;
663
664         /* generate the uniform periodic knot vector */
665
666         knotu(npts, k, x);
667
668         /*
669                 printf("The knot vector is ");
670                 for (i = 1; i <= nplusc; i++){
671                         printf(" %d ", x[i]);
672                 }
673                 printf("\n");
674
675                 printf("The usable parameter range is ");
676                 for (i = k; i <= npts+1; i++){
677                         printf(" %d ", x[i]);
678                 }
679                 printf("\n");
680         */
681
682         icount = 0;
683
684         /*    calculate the points on the rational B-spline curve */
685
686         t = k - 1;
687         step = ((double)((npts) - (k - 1))) / ((double)(p1 - 1));
688
689         for(i1=1; i1<=p1; i1++)
690         {
691                 if ((double)x[nplusc] - t < 5e-6)
692                         t = (double)x[nplusc];
693
694                 rbasis(k, t, npts, x, h, nbasis);      /* generate the basis function for this value of t */
695                 /*
696                                 printf("t = %f \n",t);
697                                 printf("nbasis = ");
698                                 for (i = 1; i <= npts; i++){
699                                         printf("%f  ",nbasis[i]);
700                                 }
701                                 printf("\n");
702                 */
703                 for(j=1; j<=3; j++)      /* generate a point on the curve */
704                 {
705                         jcount = j;
706                         p[icount + j] = 0.0;
707
708                         for(i=1; i<=npts; i++)  /* Do local matrix multiplication */
709                         {
710                                 temp = nbasis[i] * b[jcount];
711                                 p[icount + j] = p[icount + j] + temp;
712                                 /*
713                                                                 printf("jcount,nbasis,b,nbasis*b,p = %d %f %f %f %f\n",jcount,nbasis[i],b[jcount],temp,p[icount+j]);
714                                 */
715                                 jcount = jcount + 3;
716                         }
717                 }
718                 /*
719                                 printf("icount, p %d %f %f %f \n",icount,p[icount+1],p[icount+2],p[icount+3]);
720                 */
721                 icount = icount + 3;
722                 t = t + step;
723         }
724
725         delete[] x;
726         delete[] nbasis;
727 }
728
729 /**
730  * Dumps the spline's data to stdout.
731  */
732 std::ostream & operator<<(std::ostream & os, const RS_Spline & l)
733 {
734         os << " Spline: " << l.getData() << "\n";
735         return os;
736 }